РЕЗУЛЬТАТЫ ИСПЫТАНИЯ УПЛОТНЯЮЩЕГО ОБОРУДОВАНИЯ АСФАЛЬТОУКЛАДЧИКА

Поляков Т.Н.

Научный руководитель профессор Емельянов Р.Т. Сибирский федеральный университет, г. Красноярск

Качество дорожного основания обусловливают рабочие режимы уплотняющего оборудования асфальтоукладчика в зависимости от типа щебеночно-песчаной смеси и метода укладки смеси в дорожное полотно. задней части плиты в вертикальной плоскости. Предварительное уплотнение дорожного основания осуществляется трамбующим брусом когда щебеночно-песчаная смесь подвергается многократному силовому деформированию. При трамбовании деформация щебеночно-песчаной смеси достигается за счет периодического внедрения трамбующего бруса в щебеночно-песчаную смесь на заданную величину.

Измерения деформаций щебеночно-песчаной смеси осуществлялась электронным динамическим плотномером ZFG 3000, работающим на принципе падения груза определенной массы с фиксированной высоты на нагрузочную плиту. Нагрузочная плита электронного динамического плотномера под действием силы удара вызывает осадку основания щебеночно-песчаной смеси. Измеряемые параметры (ускорение, скорость и величина осадки) подвергаются электронной обработке. По их результатам рассчитывается динамический модуль упругости. Все данные храненятся в памяти устройства и могут быть выведены на печатать и перенесены на внешний персональный компьютер.

Результаты измерения коэффициента уплотнения K_y щебеночно-песчаной смеси в зависимости от динамического модуля упругости (E_{VD} , MN/m^2) и статического модуля упругости (E_{V2} , MN/m^2) приведены в табл. 3.3 /3/.

Таблица 1 - Результаты корреляции измеряемых параметров

Тип грунта	E_{VD} , MN/m^2	E_{V2} , MN/m^2	Ky
Смешанный гравий	60	120	1,03
Мелкозернистый гравий	50	100	1,00
	40	80	0,98
	35	70	0,97
Крупнозернистый гравий	40	80	1,00
Крупнозернистый песок	35	70	0,98
Смешанный песок Мелкозернистый песок	32	60	0,97
Грунты смешанные и мелкой	25	45	1,00
фракции	15	30	0,97

На рис. 1 приведены зависимости соотношения между величиной осадки и скоростью осадки нагрузочной плиты.

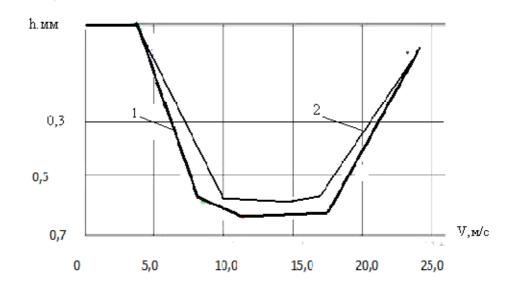


Рис. 1 Зависимости между величиной (H) и скоростью осадки (V) плиты В результате проведенных исследований определена зависимость коэффициента k уплотнения смеси от относительной амплитуды колебаний плиты A, (рис. 2)

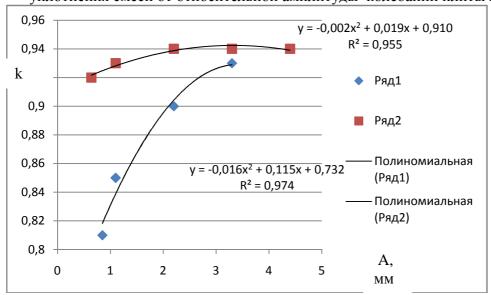


Рис. 2 Зависимость коэффициента k уплотнения смеси от относительной амплитуды колебаний плиты, вызванных работой гидромотора:

1—вибраторов виброплиты с трамбующим брусом; 2 — вибраторов виброплиты

Увеличение максимального числа воздействий на дорожную смесь от трамбующего бруса с частотой колебаний от 150 до 425 ш/с приводит к увеличению коэффициента уплотнения с 0,82 до 0,92. В случае работы трамбующего бруса с виброплитой приводит к увеличению коэффициента уплотнения с 0,92 до 0,94 что способствует улучшению качества поверхности уплотненного покрытия. Установлено, что при работе трамбующего бруса со статической плитой появляются разрывы на поверхности покрытия при уплотнении песчаной смеси при скорости передвижения асфальтоукладчика равна 6 м/мин. Работа с виброплитой, работающей совместно с трамбующим брусом, допускает увеличение скорости передвижения асфальтоукладчика сдо 8 м/мин.

Щебеночно-песчаная смесь эффективно уплотняется при первых ударах трамбующего бруса, и повышение коэффициента уплотнения для песчаной смеси с толщиной слоя 5...6 см практически прекращается после 5 ударов бруса. Такое влияние на уплотнение смеси оказывает и масса рабочего органа.

Значения коэффициента уплотнения щебеночно-песчаной смеси в зависимости от режимов работы уплотняющего оборудования и скорости движения асфальтоукладчика приведены на (рис.3).

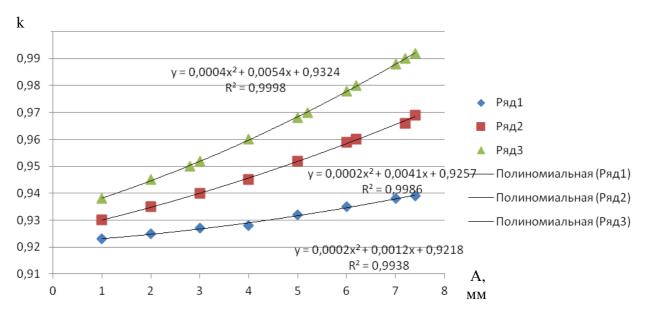


Рис. 3 - Зависимость коэффициента уплотнения смеси от частоты вращения ксцентриковоговала бруса

В результате проведенных экспериментов установлено что, при увеличении частоты вращения эксцентрикового вала привода от 1000 до 1500 об/мин при скорости движения асфальтоукладчика 3,2 м/мин коэффициент уплотнения изменяется от 0,93 до 0,97, при скорости 4,8 м/мин - от 0,923 до 0,938. Исследования показали, что рабочий орган, асфальтоукладчика способен уплотнять щебеночно-песчаную смесь до коэффициента уплотнения 0,99 при скорости движения 1,5 м/мин и толщине слоя 4...5 мм. Зависимость коэффициента к уплотнения смеси от относительного перемещения трамбующего бруса приведена на рис. 4.

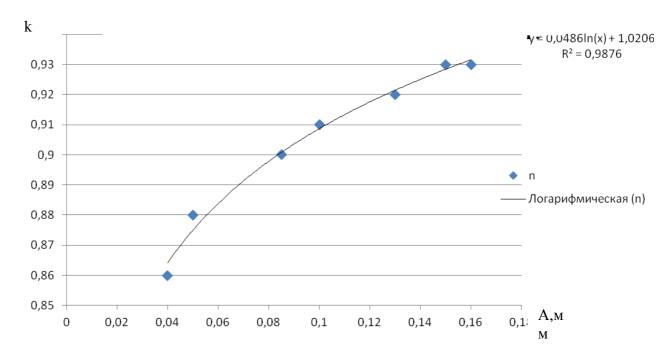


Рис. 4 - Зависимость коэффициента (k) уплотнения смеси от относительного перемещения (e) трамбующего бруса

Полученная зависимость коррелируется логарифмической кривой с точностью корреляции до 0,98.

На рис. 5 показаны результаты измерения степени уплотнения щебеночно-песчаной смеси по ширине укладываемой полосы дороги.

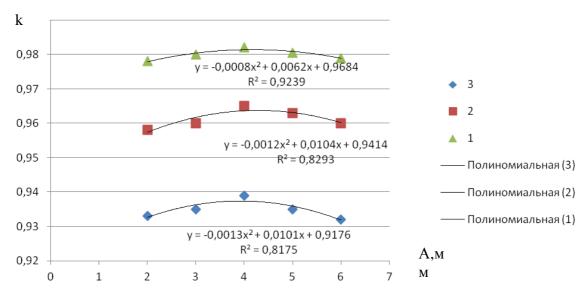


Рис. 5 - Зависимость коэффициента уплотнения щебеночно-песчаной смеси по ширине укладываемой полосы дороги

Зависимость коэффициента уплотнения щебеночно-песчаной смеси по ширине укладываемой полосы дороги полиномиальная. Точность корреляции в зависимости от состава смеси варьируется от 0,81 до 0,92.