ОСОБЕННОСТИ ИЗГОТОВЛЕНИЯ МАГНЕЗИАЛЬНОГО ВЯЖУЩЕГО Зырянов Е.В.,

научный руководитель канд. тех. наук Василовская Н.Г. Сибирский федеральный университет

Производство магнезиальных вяжущих состоит из предварительного измельчения сырья, обжига и помола. В зависимости от конструкции печей дробление производится до кусков различной величины. При обжиге в шахтных печах средний размер кусков обычно составляет 50-60 мм, при обжиге во вращающихся печах — 10-15 мм.

Для обжига магнезита применяют шахтные печи с выносными топками либо вращающиеся печи. При обжиге в шахтных печах поддерживают температуру 700- 800° C, во вращающихся — 900- 1000° C. Более высокая температура при обжиге во вращающихся печах объясняется тем, что материал там находится значительно более короткий промежуток времени. Производительность шахтных печей обычно составляет 20-30 т/сутки, расход топлива — 10-15% от веса готового продукта. Производительность вращающихся печей — 50-120 т/сутки; расход топлива — 20-30%.

Обожженный материал дробится в шаровых мельницах. Наиболее целесообразно применять мельницы с сепараторами. Если обжиг проводился в шахтной печи, то перед помолом производится дробление. Тонкость помола каустического магнезита должна быть такой, чтобы остаток на сите $N \ge 02$ не превышал 5%, а на сите $N \ge 008$ - 25%.

При выполнении диссертационной работы экспериментальным способом была выявлена оптимальная температура обжига магнезиальной породы, равная 700° C. При данной температуре выявлены максимальные показатели прочности на сжатие в возрасте 28 суток твердения образцов, данные сведены в табл. 1 и показаны на рис. 1.

Прочность на сжатие при различной температуре обжига магнезиального вяжущего.

Прочность образ	рочность образцов при сжатии в зависимости от температуры обжига вяжущего, МПа				
500 °C	550 °C	600 °C	650 °C	700 °C	
34,8	37	34,3	43,31	48,6	

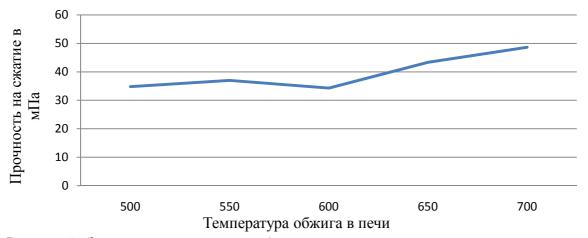


Рисунок 1. Зависимость прочности образцов от времени и температуры выдерживания В качестве исходного материала была использована магнезиальная порода с месторождения «Голубое», расположенного в Красноярском крае. Сырьё данного

месторождения отличается самым высоким качеством минерала из всех разведанных в СНГ месторождений магнезита, количество активного MgOсоставляет от 87 до 88%. На сегодняшний день доказанные запасы месторождения «Голубое» составляют 8 миллионов тонн.

Дальнейшие испытания были направлены на исследование технологии обжига магнезиальной породы для получения достоверных данных, так как обжиг производили в лабораторной печи, в отличии от производственных условиях, где используются шахтные и вращающиеся печи.

Изначально магнезиальную породу дробили в щековой дробилке до размера кусков 5-10 мм, далее мололи в шаровой мельницедо остатка на сите № 02 не более 5%, а на сите № 008 - 25% и только потом обжигали в печи при температуре 700 $^{\rm O}$ С в течении 30 минут. После ряда испытаний технологическую последовательность обжига было решено изменить. Сначала куски магнезиальной породы размером 15-20 мм обожгли в печи, а затем измельчили до остатка на сите № 02 не более 5%, а на сите № 008 - 25%.

Полученное вяжущее было затворено водным раствором соли $MgSO_4 \times 7H_2O$ плотностью 1,2 г/см³и были определены сроки схватывания, результаты сведены в табл.2 и рис. 2.

Таблица 2 Сроки схватывания в зависимости от способа приготовления магнезиального вяжущего

	Время, мин.	
	Способ №1	Способ №2
Начало схватывания	29	12
Конец схватывания	90	56

Примечание: Способ №1–помол затем обжиг; Способ №2 – сначала обжиг затем помол.

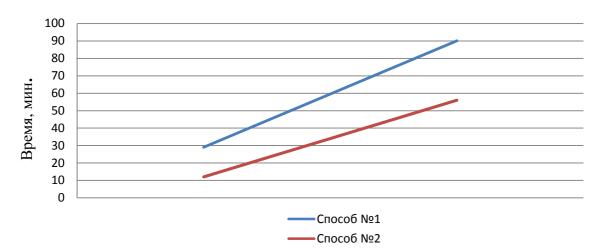


Рисунок 2. Зависимость прочности образцов от времени и температуры выдерживания

По полученным данным можно сделать вывод, что последовательность приготовления магнезиального вяжущего сильно влияет на прочность и на скорость твердения магнезиального камня. Для дальнейшей работы было принято решение использовать второй способ приготовления магнезиального вяжущего, в виду наилучших показателей по скорости твердения. Быстрый набор прочности даст возможность поработать с ячеистыми бетонами на основе магнезиального вяжущего.