ИСПОЛЬЗОВАНИЕ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА В КАЧЕСТВЕ МАТЕРИАЛА ДЛЯ ИЗГОТОВЛЕНИЯ КЛАПАННОЙ ПАРЫ ШТАНГОВОГО ГЛУБИННОГО НАСОСА Абрамович В.О.

Инженер Привалихин Р.С.

Сибирский федеральный университет

В настоящее время свыше 70% действующего фонда скважин оснащены штанговыми насосами, их применяют в скважинах с дебитом до $50~{\rm m}^3$ жидкости в сутки при средних глубинах подвески $1000-1500~{\rm m}$.

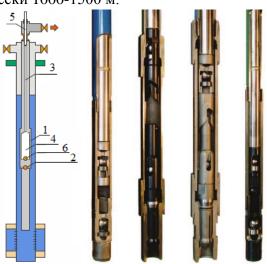


Рис.1. конструкция ШГН: цилиндр - 1; всасывающий шаровой клапан - 2; насосные штанги - 3; плунжер - 4; сальниковый шток - 5; нагнетательный шаровой клапан - 6.

Штанговый насос является поршневым насосом прямого действия с проходным поршнем. Цилиндр 1 насоса опускается в скважину на насосных трубах на некоторую глубину под уровень жидкости. Всасывающий шаровой клапан 2 установлен на нижнем конце цилиндра 1. На насосных штангах 3 спускают плунжер 4, подвешиваемый на колонне насосных штанг 3 с помощью специальной клетки. Через сальниковый шток 5 верхний конец штанг при помощи специальной подвески крепят к головке балансира станка-качалки. Он качается на опоре, укрепленной на стойках. Балансир приводится в действие с помощью кривошипно-шатунного механизма, при этом происходит возвратно-поступательное движение штанг и соединенного с ними плунжера 4. При ходе штанг 3 и плунжера 4 вверх, вследствие давления жидкости на всасывающий клапан 2 снизу и снижения давления в цилиндре, клапан поднимается, и нефть поступает в насос. Нагнетательный клапан 6 давлением вышележащего столба жидкости в насосных трубах в это время закрыт.

При движении штанг 3 и плунжера 4 вниз под собственным весом всасывающий клапан 2 закрывается, нагнетательный 6 открывается, и жидкость идет вверх через полый плунжер 4 в подъемные трубы. При дальнейших ходах плунжера 4 уровень жидкости, повышаясь в подъемных трубах, достигает устья скважины, затем она направляется в выкидную линию.

Штанговый насос работает при экстремальных условиях:

- Обводненность скважинной продукции до 99 %;
- Абсолютная вязкость до 100 мПа·с,
- Содержание твердых механических примесей до 0,5 %;
- Содержание свободного газа на приеме до 25 %;

- Объемное содержание сероводорода до 0,1 %;
- Минерализация воды до 10 г/л;
- Диапазон температур от -2 до +95.

Было выявлено отрицательное влияние растворенного газа на работу штангового насоса [1]. Попадающий в цилиндр газ занимает часть рабочего объема и тем самым снижает подачу жидкости насосом.

Приведенные данные [2] показывают, что в скважинах, производительность превышающая дебит, при движении плунжера вниз происходит столкновение. В момент открытия подвижного клапана происходит быстрый сброс нагрузки штанг, при этом возникает ударная нагрузка (вовремя столкновения с жидкостью) на клапанную пару в частности и насосную систему в целом.

Результаты исследований, проведенные А.Н. Адониным, показали, что механические примеси, поступающие в штанговый насос, существенным образом влияют, на работоспособность клапанной и плунжерной пары оборудования.

В процессе работы штангового глубинного насоса утечки в клапанной паре неизбежны ведут к потерям в добыче. Наличия таких утечек приводит к сокращению межремонтного периода.

При работе в сильнообводненных нефтях, содержащих сероводород, происходят ускоренные коррозийные процессы, тем самым замена штанговых насосов производится по 8-9 раз в году, а с учетом проведения ремонтов, в частности, замены клапанов, по 16-17 раз в году.

Полностью избавиться от ремонта клапанов невозможно, однако одним из вариантов увеличения надежности работы насосного оборудования и уменьшения общего времени его простоя, возможно путем осуществления анализа и подбора современных материалов.

В основном детали клапанов изготавливают из материалов, приведенных в таблице 1.

Таблица 1 Материалы, используемые при изготовлении клапанной пары штанговых насосов

Материал седла	Материал шара
Алюминий	Ацеталь
Ацеталь	Бутадиенакрилонитрильный каучук
Бутадиенакрилонитрильный каучук	Геоласт
Геоласт	Металлокерамика
Нержавеющая закаленная сталь	Нержавеющая закаленная сталь
Поливинилиденфторид	Полихлоропрен
Нержавеющая закаленная сталь с	Полихлоропрен с основой из нержавеющей
кольцом из твердого сплава (карбида	стали
вольфрама)	
Полипропилен	Политетрафторэтилен (фторопласт)
Сантопрен	Сантопрен
Спеченный металлопорошок	Стеллит (сплав кобальта, никеля и хрома)
Стеллит (сплав кобальта, никеля и хрома)	Твердый сплав (карбид вольфрама)
Твердый сплав (карбид вольфрама)	Фторэластомер
Термопластичный каучук	
Фторэластомер	

Предлагается использовать материал СВМПЭ (сверхвысокомолекулярный полиэтилен) в составе материалов клапанных пар, обладающий уникальным комплексом физико-химических свойств: высокой износостойкостью, устойчивостью к

агрессивным средам, исключением налипания, низким коэффициентом трения, высокой ударной вязкостью.

Одним из примечательных свойств данного материала это способность поглощать энергию удара. На основании статьи [3] было выявлено, что стойкость к ударным воздействиям СВМПЭ превосходит фторопласт в 7 раз. Благодаря этому ударная нагрузка будет не так критично влиять на клапанную пару.

Практически по всем физико-механическим характеристикам СВМПЭ превосходит сталь: по ударной вязкости в 4 раза, по износостойкости в 10-12 раз, коэффициент трения в среде смазки в 5 раз меньше, однако предел прочности находится в диапазонах 38-42 МПа против стали 400 МПа.

Для оценки применимости материала изготовления клапана требуется оценить прочностные характеристики, в частности решить задачу контакта шарика и седла клапана.

Для насоса HH2-C-57-12-10-И по ОСТ 26.16.06.86 клапан имеет следующие геометрические характеристики (рис.2)

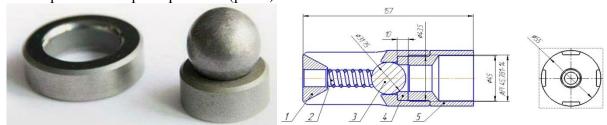


Рис.2 Конструкция клапанного узла

Оценка контактной прочности производилась в программе Ansys.

Постановка задачи:

Шарик располагался по касательной к внутренней поверхности скругления седла. Нагружение производилось с постоянным давлением 18 атм. На верхнюю часть шарика клапана. Материал присвоеный шарику и кольцу клапана – СВМПЭ со средней молекулярной массой $4*10^6$ г/моль.

Результаты расчёта:

Плотность -0.95 г/см3;

Коэффициент трения СВМПЭ-нефть-СВМПЭ - 0,04;

Предел прочности - 40 Мпа.

На рисунке 3 показаны результаты расчета контактных напряжений седла и шарика клапана насоса.

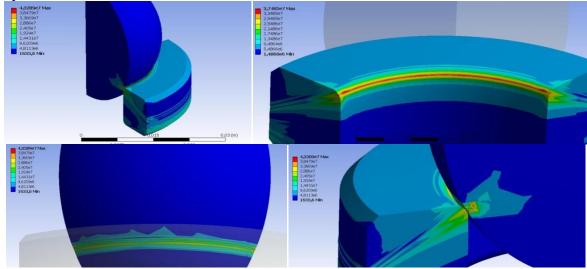


Рис.3. Контактные напряжения в клапанном механизме

Контактные напряжения материала СВМПЭ составляют 43,3 МПа для шарика и 37,5МПа для седла. Напряжения превышают допустимый предел прочности шарика, это приведет к пластическому разрушению материала, что недопустимо при дальнейшей эксплуатации механизма.

Требуется произвести оптимизацию геометрических характеристик клапана и определить оптимальный радиус скругления седла клапана. На основании анализа геометрии был выбран оптимальный размер площадки скругления, составил 4 мм.

Рис.4. Контактные напряжения с оптимизированным профилем Контактные напряжения на поверхности контакта для шарика составляет 29,3 МПа, для седла 24,9 МПа, соответственно.

Запас прочности:

при номинальном режиме работы клапана составляет 1,78-1,97 при максимальном режиме работы 1,3-1,44

Наряду с характеристиками износостойкости, ударной вязкости, термостойкости, значения которых значительно превышают нержавеющую сталь, применяемую на сегодняшний день и на основании расчетных данных контактной прочности, позволяют судить о возможности использования данного материала в составе клапана насоса, что позволит значительно увеличить межремонтные периоды и уменьшить простой оборудования.

Выводы:

Требуется рассмотреть применение СВМПЭ для других машин и механизмов в нефтегазовой отрасли.

Использование СВМПЭ в клапанном устройстве позволит значительно увеличить сроки межремонтных периодов и уменьшить время простоя оборудования.

Список использованных источников

- 1. Власова В.В. «Эффективности применения стандартного ШГН в процессах откачки многокомпонентной жидкости».- 2003г
- 2. Дж.Н.МакКой. «Как поддержать высокую эффективность добычи нефти при эксплуатации скважин ШГН».- стр. 24.
- 3. Селютина Γ .Е. «Композиционные материалы на основе сверхвысокомолекулярного полиэтилена: свойства, перспективы использования».- 2010г.